

Grades of Stainless Steel

1. Austenitic Stainless Steel (Series 200 & 300)

Austenitic stainless steels are the **most widely used** type due to their **high corrosion resistance, excellenand non-magnetic properties in the annealed state.** These steels contain a **face-centered cubic (FCC) crystal structure,** which enhances their **ductility, toughness, and resistance to extreme temperatures.**

Key Composition:

- Chromium (16% or more) Forms a protective oxide layer, preventing rust.
- Nickel (8% or more) Stabilizes the austenitic structure, enhancing corrosion resistance and mechanical properties.
- Manganese (used in 200 series) A lower-cost alternative to nickel, improving strength while maintaining corrosion resistance.
- Molybdenum (used in 316 & 317 grades) Enhances resistance to chloride-induced corrosion.

Properties:

- Excellent corrosion resistance, even in harsh environments (e.g., marine and chemical exposure).
- ✓ High ductility and toughness, making it easy to weld and form.
- Non-magnetic in the annealed state, but can become slightly magnetic when cold-worked.
- Retains strength at high and low temperatures, making it ideal for extreme applications.

Grade	Composition	Properties	Applications
304	18-20% Cr, 8-10.5% Ni	Excellent corrosion resistance, good weldability, non-magnetic	Kitchenware, food processing equipment, construction materials
316	16-18% Cr, 10-14% Ni, 2-3% Mo	Superior corrosion resistance, especially against chlorides and acids	Marine equipment, medical implants, chemical processing equipment
321	17-19% Cr, 9-12% Ni, stabilized with Titanium (Ti)	High heat resistance, excellent weldability	Aerospace components, exhaust systems, heat exchangers
201	16-18% Cr, 3.5-5.5% Ni, higher Mn and N	Lower-cost alternative with slightly reduced corrosion resistance	Automotive trim, kitchen utensils, appliances

• **Best For:** Food and beverage processing, marine environments, medical equipment, chemical industries.

2. Ferritic Stainless Steel (Series 400)

Ferritic stainless steels contain **higher chromium content but little to no nickel,** making them **more cost-effective** while still providing good corrosion resistance. They have a **body-centered cubic (BCC) crystal structure,** which results in **higher strength and magnetism** but lower ductility compared to austenitic steels.

Key Composition:

- **Chromium (10.5–18%)** Provides oxidation resistance but limits toughness.
- **Carbon (0.08–0.15%)** Enhances strength but reduces weldability.
- Small amounts of titanium or niobium Used to prevent grain growth and improve heat resistance.

Key Composition:

- **Chromium (10.5–18%)** Provides oxidation resistance but limits toughness.
- **Carbon (0.08–0.15%)** Enhances strength but reduces weldability.
- Small amounts of titanium or niobium Used to prevent grain growth and improve heat resistance.

Properties:

- ✓ Good corrosion resistance, particularly against stress corrosion cracking.
- High oxidation resistance, making them suitable for elevated temperature applications.
- Magnetic in all conditions.

Lower cost due to minimal nickel content.

Common Grades & Applications:

Grade	Composition	Properties	Applications
430	16-18% Cr	Excellent corrosion resistance, good weldability, non-magnetic	Kitchenware, food processing equipment, construction materials
409	10.5-11.75% Cr	Superior corrosion resistance, especially against chlorides and acids	Marine equipment, medical implants, chemical processing equipment
439	17-19% Cr, stabilized with Titanium (Ti)	High heat resistance, excellent weldability	Aerospace components, exhaust systems, heat exchangers

 Best For: Food and beverage processing, marine environments, medical equipment, chemical industries.

3.Martensitic Stainless Steel: High-Strength, Heat-Treatable Alloy

Key Characteristics

Martensitic stainless steels are **high-carbon**, **heat-treatable alloys** known for **high strength**, **hardness**, **and moderate corrosion resistance**. They feature a **body-centered tetragonal (BCT) structure**, making

them magnetic and wear-resistant but less weldable than austenitic grades.

Composition:

- **Chromium (12-18%)** Provides oxidation resistance and hardness.
- **Carbon (0.10-1.2%)** Enables hardening but reduces weldability.
- Nickel & Molybdenum (in some grades) Improve toughness and corrosion

Benefits:

- Exceptional hardness & strength after heat treatment.
- ✓ **High wear resistance,** ideal for cutting tools and industrial applications.
- ✓ Moderate corrosion resistance in non-aggressive environments.
- ✓ Magnetic properties, useful in engineering applications.

Limitations:

- **X** Lower corrosion resistance than austenitic and duplex grades.
- **X** Reduced weldability, requiring pre/post-heat treatment.

Heat Treatment & Hardening

Martensitic stainless steel is **hardened through heat treatment**:

1.Austenitizing (950-1050°C) – Converts structure to austenite.
2.Quenching (rapid cooling) – Forms hard martensite.
3.Tempering (200-600°C) – Adjusts hardness & toughness.

Common Grades & Applications:

Grade	Properties	Applications

410	Wear-resistant, moderate corrosion resistance	Cutlery, turbine blades, medical tools
420	High hardness, good polishability	Knife blades, dental tools, ball bearings
440C	Superior wear resistance, highest hardness	Premium knives, surgical instruments, bearings
431	Good strength, moderate corrosion resistance	Aerospace components, marine shafts

Martensitic vs. Other Stainless Steels					
	Property	Martensitic	Austenitic (300 Series)	Ferritic (400 Series)	Duplex
	Hardness	High (heat-treated)	Low	Medium	Medium-High
	Corrosion Resistance	Moderate	Excellent	Good	Very Good
	Weldability	Low	Excellent	Moderate	Good

Key Applications:

- Cutlery & Blades Surgical scalpels, kitchen knives, industrial cutting tools.
- Aerospace & Automotive Landing gear, fasteners, shafts.
- Medical Instruments Surgical & dental tools.
- Industrial Equipment Turbine blades, pump shafts, bearings

4. Duplex Stainless Steel

Duplex stainless steels, with their unique austenitic-ferritic microstructure, offer a superior balance of strength and corrosion resistance. They possess roughly twice the strength of standard austenitic stainless steels and exhibit exce

llent resistance to stress corrosion cracking, particularly in chloride-rich environments. This makes them ideal for demanding applications like pressure vessels in the desalination and petrochemical industries, where they outperform even some austenitic grades. Their higher chromium and molybdenum content, coupled with lower nickel, contributes to this enhanced corrosion resistance and also makes them a cost-effective choice compared to equivalent austenitic grades. Beyond these industries, duplex stainless steels find use in building and construction, including bridges and tie bars.

Key Composition:

- Chromium (19% or more) Enhances corrosion resistance.
- Nickel (small amounts, around 5%) Stabilizes the microstructure.
- **Molybdenum** Provides additional resistance to chloride and pitting corrosion.

Properties:

- ✓ High tensile strength, making it more durable than austenitic grades.
- Superior resistance to stress corrosion cracking, especially in chloride environments.
- ✓ Good weldability compared to ferritic and martensitic steels.
- ✓ Balanced cost, as it uses less nickel than austenitic grades.

Common Grades & Applications:

Grade	Composition	Properties	Applications
2205	22% Cr, 5% Ni, 3% Mo	High strength, excellent stress corrosion resistance	Offshore oil rigs, chemical processing
2507 (Super Duplex)	25% Cr, 7% Ni, 4% Mo	Superior corrosion resistance, high toughness	Desalination plants, marine structures

• **Best For:** Aggressive environments such as chemical processing, petrochemical, and marine applications.

5. Precipitation-Hardening (PH) Stainless Steel

Precipitation-hardening stainless steels are engineered for exceptional strength combined with moderate to high corrosion resistance. Their unique properties are achieved through carefully controlled heat treatment processes that promote the formation of precipitates within the metal's microstructure, significantly enhancing mechanical performance. These steels, all containing both chromium and nickel, are known for their ease of fabrication and offer extremely high tensile strength after a low-temperature heat treatment.

While austenitic precipitation hardening alloys have largely been superseded by superalloys, semiaustenitic variations still find specialized applications in aerospace, even in modern designs. Martensitic precipitation hardening stainless steels, stronger than standard martensitic grades, are commonly used in the production of bars, rods, and wires.

ALIGN · ENGAGE · DELIVER

Key Composition:

- Chromium & Nickel Provide a corrosion-resistant base.
- Copper, Molybdenum, or Titanium Used for precipitation hardening.
- Air-hardening or quenching processes Control final material properties.

Properties:

- Extremely high strength, even higher than martensitic stainless steels.
- ✓ **Good corrosion resistance,** though slightly lower than austenitic grades.
- Can be heat treated to specific performance requirements.
- ✓ Magnetic in some cases, depending on composition.

Precipitation-Hardening (PH) Stainless Steel

PH stainless steels provide high strength and good corrosion resistance through a controlled aging heat treatment process.

Grade: 17-4 PH

- Composition: 17% Cr, 4% Ni, Cu
- Properties: High strength, good corrosion resistance, heat treatable
- Applications: Aerospace, military, nuclear applications, precision gears

Key Benefits: High mechanical strength, excellent corrosion resistance, and suitability for highperformance applications.

Best For: Aerospace, defense, and precision mechanical components.

Common Grades & Applications: Best For: Aerospace, defense, and precision engineering.